Learning without Forgetting: Towards Continual learning of Fault
Localization Models in Industrial Software Systems

Chun Li Hui Li Zhong Li
Nanjing University Samsung Electronics (China) R&D Nanjing University
State Key Laboratory for Novel Centre State Key Laboratory for Novel

Software Technology
Nanjing, China
chunli@smail.nju.edu.cn

Minxue Pan”
Nanjing University
State Key Laboratory for Novel
Software Technology
Nanjing, China
mxp@nju.edu.cn

Abstract

Learning-based fault localization has achieved promising results.
However, as software and tests are constantly evolving, models
trained on old data become ineffective on new data. Particularly, in
the context of system testing for large-scale software, each iteration
generates a large volume of new data. This makes retraining the
model from scratch incur an unacceptable time overhead, while
merely fine-tuning on new data leads to catastrophic forgetting.
Continual learning offers an effective method for models to avoid
catastrophic forgetting during this iterative process. However, ex-
isting continual learning methods are not specifically designed for
fault localization or for large-scale software system testing scenar-
ios, which leads to their direct application yielding sub-optimal
effectiveness. In response, we propose CIALLO, a novel continual
learning framework specifically designed for large-scale software
fault localization. C1aLLo first extracts fine-grained program se-
mantics from logs, then utilizes fault characteristics to enhance the
weights of certain semantics. Finally, CIALLO uses an unsupervised
algorithm to obtain corresponding embeddings and selects rep-
resentative exemplars based on clustering. Subsequently, C1aLLo
mixes the representative exemplars with new samples for train-
ing and adjusts the loss weight according to the model’s degree
of mastery over the sample. This allows the model to focus more
on samples that are not yet well-mastered during the training pro-
cess, thereby enabling it to learn new faults while mitigating the
forgetting of old ones. In extensive evaluations against 6 contin-
ual learning baselines, C1aLLO demonstrates superior performance,
improving overall effectiveness by 17.30% to 45.23%.

*Corresponding author.

990¢9

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

ICSE °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/2026/04

https://doi.org/10.1145/3744916.3787809

Nanjing, China
huili@samsung.com

Software Technology
Nanjing, China
lizhong@nju.edu.cn

Xuandong Li
Nanjing University
State Key Laboratory for Novel
Software Technology
Nanjing, China
Ixd@nju.edu.cn

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

ACM Reference Format:

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li. 2026. Learning
without Forgetting: Towards Continual learning of Fault Localization Mod-
els in Industrial Software Systems. In 2026 IEEE/ACM 48th International
Conference on Software Engineering (ICSE °26), April 12-18, 2026, Rio de
Janeiro, Brazil. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3744916.3787809

1 Introduction

Context. Fault localization is the first step in debugging, and man-
ual fault localization is typically time-consuming, costly, and labor-
intensive [2]. This issue is even more pronounced in industrial
settings, particularly during the system testing of large-scale soft-
ware. In this scenario, engineers often perform fault localization
by inspecting logs, which can require them to review tens of thou-
sands of log lines [23, 47]. This significantly increases the chal-
lenges of debugging and creates a substantial industry demand
for automated fault localization models. Currently, learning-based
automated fault localization techniques have achieved state-of-the-
art progress in log-based industrial software fault localization [23].
However, existing work primarily focuses on how to train the ini-
tial fault localization model, with little attention paid to the model
iterations.

In real-world scenarios, as software and tests continuously evolve,
new faults emerge [18]. In this context, the data distribution shifts,
causing the effectiveness of models trained on old data to degrade
when localizing faults in new data. This problem is particularly
severe in the system testing of large-scale software. As shown in
Figure 1, the performance of the no-update model degrades over the
course of the iterations, eventually becoming unusable. In industrial
settings, each iteration generates a massive amount of data [23].
Retraining the model from scratch after every iteration, therefore,

https://orcid.org/0009-0007-9787-3586
https://orcid.org/0009-0006-2646-4251
https://orcid.org/0000-0002-3849-3416
https://orcid.org/0000-0002-4011-5350
https://orcid.org/0000-0003-3090-9568
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3744916.3787809
https://doi.org/10.1145/3744916.3787809
https://doi.org/10.1145/3744916.3787809

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

o

~#- No-update Model
Fine-tuning Model

Top-1 Accuracy
o o o
» o ®

/
J
;
J
/

o
o

o
o

Number of Iterations

Figure 1: Top-1 accuracy of the model [23] under no-update
across all test sets, and under fine-tuning on the first test set.

causes unacceptable time overhead, with the average time cost be-
ing four times that of training on a single dataset. Another straight-
forward solution is to fine-tune the model on new data; however,
previous research—as well as our experiments—has shown that di-
rect fine-tuning leads to catastrophic forgetting [12, 46]. As shown
in Figure 1, fine-tuning leads to obvious performance degradation
on the first dataset. In this scenario, it is important for the model
to remember faults that have occurred in the past, as these errors
may recur in the future.

Limitations. Continual learning (also known as lifelong learn-
ing) [46] techniques are typically used to solve the aforementioned
problem of enabling a model to learn new knowledge while avoid-
ing catastrophic forgetting. Currently, there are two mainstream
categories of continual learning techniques. The first is replay-
based methods [31, 38, 45], which add a subset of old data to new
data to mitigate forgetting. The second category involves adding
regularization to prevent the model’s parameters from changing
significantly, thereby combating forgetting [20, 28]. In software
engineering, research has been conducted on continual learning,
including code models [12] and test case selection [3, 9, 13, 29].
However, these methods were not designed with the characteristics
of the fault localization scenario in mind, leading to significant
limitations when adapting them to a log-based large-scale software
fault localization scenario. These limitations primarily stem from
the following aspects.

First, when selecting representative exemplars, the feature ex-
traction component of existing methods is challenging to adapt to
log-based fault localization. This hinders efficient feature extraction,
causing the replay of these representative exemplars to yield only
sub-optimal effectiveness. For example, REPEAT [12] uses TF-IDF
to extract sample features. However, term frequency cannot effec-
tively represent the program semantics within logs, as this method
struggles to capture key features required for log-based fault local-
ization, such as the relationships between different program entities
or the execution order of methods [23]. Test case selection has also
been used to extract features and select representative samples for
replay in continual learning [9, 29, 52]. However, such methods
primarily select samples based on the model’s output probabilities
(i.e., uncertainty), which may lead to the selection of samples with
similar program semantics or faults [29]. This redundancy reduces
the diversity of the representative exemplars, causing the replay
process to achieve sub-optimal effectiveness given the limited size
of the replay dataset [12, 29, 46]. Second, current methods primarily
adopt a simple replay strategy, which involves directly training the
model on a mix of representative exemplars and new data. This
strategy, however, overlooks the unmastered faults within the data.
In the context of large-scale software system testing, faults that

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

have occurred previously may also reappear in new data. This can
cause the model to perform well on some portions of the new data
and poorly on others. We need to enable the model to focus more
on those poorly performing (i.e., not yet mastered) samples during
the continual learning process. More generally, both faults that
may have been catastrophic forgetting and new faults constitute
knowledge that the model has not yet mastered.

Proposal. To address this problem, we propose C1arro (ContInual
leArning of fauLt LocalizatiOn), a novel continual learning frame-
work specifically designed for log-based fault localization in large-
scale software and system testing. The key insights underlying
CiaLLo are two-fold. First, feature extraction tailored to log-based
fault localization can effectively enhance the selection of represen-
tative exemplars. To this end, C1aLLO employs more fine-grained
program semantic extraction from logs and utilizes fault characteris-
tics to enhance certain program semantics during feature extraction.
Specifically, C1ALLO extracts coverage information and method call
information from logs. It then increases the weights of different
method calls based on their frequency and whether they involve a
faulty entity. Finally, we obtain embeddings for the logs using the
extracted program semantics and then select representative exem-
plars via clustering. Second, focusing more on yet-to-be-mastered
samples during the training process can enable the model to better
learn new knowledge and mitigate catastrophic forgetting. This is
because both potentially forgotten faults and new faults are cases
that it has not yet mastered well. To achieve this, we adaptively
calculate corresponding weights during model training based on
the model’s confidence (i.e., the suspiciousness score). When the
confidence is high, indicating the model has mastered the sample
well, its weight is reduced; otherwise, the weight is increased. In
this way, the model focuses more on learning from the samples it
has mastered relatively poorly, thereby achieving better continual
learning performance.

Evaluation. Our evaluation of C1aLLO’s performance in a large-
scale software and system testing involved over three thousand logs
and eight iterations from system tests of eleven software projects
written in C/C++, each exceeding one million lines of code, sup-
plied by a global corporation. We benchmarked CiaLLo against
six representative continual learning baselines, demonstrating its
exceptional efficacy by significantly outperforming all compared
methods. Specifically, C1aLLO achieves an improvement of 17.30%
to 45.23% in overall effectiveness, 14.89% to 63.63% in learning new
knowledge, and 55.55% to 76.47% in mitigating forgetting, over the
studied baselines.

Contributions. The main contributions of this paper are as follows:

e We propose CIALLO, a novel continual learning framework
specifically designed to improve the continual learning per-
formance of fault localization models in the context of large-
scale software and system testing.

o We develop a representative exemplars selection method that
leverages more fine-grained program semantics and fault
characteristics, and an adaptive weight loss function that
enables the model to better learn new faults while retaining
knowledge of old ones.

e We conducted extensive evaluations of CiaLLo within a con-
tinual learning setting on a large-scale dataset, encompassing

Learning without Forgetting: Towards Continual learning of Fault Localization Models in Industrial Software Systems

over three thousand logs and eight iterations, and the results
demonstrate that Ciarro effectively improves the contin-
ual learning capability of fault localization models in the
large-scale software and system testing scenario.

Data availability statement. Code and configuration of CiaLLo
are publicly available at https://github.com/pppppkun/Ciallo.

2 Methodology

In this section, we first introduce the background of industrial
software fault localization and continual learning. Then, we define
our problem and discuss the key observations behind this work to
motivate the idea of CiaLro.

2.1 Background

Industrial Software Fault Localizations. The industrial software
we consider primarily operates continuously in real-world produc-
tion environments, and as a result, it constantly generates logs and
requires ongoing maintenance based on that log data. The software
itself is also typically complex and large-scale compared to toy ex-
amples. After the system testing of large-scale industrial software,
engineers primarily rely on logs to localize faults [47]. Logs chrono-
logically record the software’s behavior during the testing process.
Each log entry contains information about the currently executing
method, as well as the file, package, and thread associated with that
method [23]. Currently, log-based fault localization efforts focus
on parsing program semantics from logs into graphs and training
localization models using contrastive learning [23]. Figure 2 shows
a real log obtained from our industrial partner, which has been
simplified and anonymized, and the corresponding graph represen-
tation. t, p, f and m denote the thread, package, file, and method.
my is the faulty method. As software continuously iterates, the
corresponding tests and faults also evolve, necessitating that the
models be updated as well, as discussed in Section 1. This motivates
us to investigate the problem of continual learning for automated
fault localization models in industrial software systems.
Continual Learning. To adapt to dynamic real-world environ-
ments, data-driven models must be continuously updated for new
scenarios [46]. Continual learning enables models to incrementally
learn new knowledge from newly collected data while effectively
preventing the catastrophic forgetting of old knowledge, thereby
adapting to data distribution shifts. The two mainstream categories
in continual learning are replay-based and regularization-based
methods. Replay-based methods [38, 45] achieve continual learn-
ing by selecting representative exemplars from the old data and
training on a mixture of these exemplars and new data to mitigate
forgetting. Regularization-based methods [20, 28], on the other
hand, introduce a regularization term to the loss function. This
term penalizes significant changes to network parameters that are
crucial for previous tasks, thereby mitigating forgetting. To the best
of our knowledge, there is currently no work on applying continual
learning to fault localization. In the domain of code models, RE-
PEAT [12] combines both replay and regularization for continual
learning. Test case selection [9, 52] can be applied to replay-based
methods to select the representative exemplars from old data for
replay, thereby enabling continual learning.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

longm] |

5022 < t1,p1, f1,g > | @)
5023 < t1,p1, f2,m3 >| |

5024 |< 1,1, fryma > 1 () !
5025 |< t1,p1, f1 g >| '
5026 < t1,p1, fo,ms >| | ()
5027 < t1,p1, f1,ma >| : @ 5

5028 |< t1,p1, fr iy > T 0.0 0.2 0.4 0.6 0.8 10
Mean suspiciousness value of fault entities

Count

&<®

Figure 2: A simplified log and Figure 3: The distribution of
its graph representation. mean suspiciousness value of
fault entities of each sample.

2.2 Problem Statement

Following prior work on fault localization in industrial software [23],
we formally define alog as L = (I3, 1o, . . ., In), where (I3, I, ...,1,)
denotes the chronologically ordered lines of the log L. Each line
I;, in general, comprises the running thread number, the package,
file, and method executed. That is, [; = (¢, p, f, m), where t,p, f, m
represent the thread, package, file, and method, respectively. In the
continual learning scenario, the model must learn continuously
from a series of datasets, each containing logs and their correspond-
ing fault entities. We assume that the software undergoes N testing
iterations, and a dataset is collected after each iteration. Let D; be
the dataset collected after the i-th iteration, such that D; = {T;, V;},
where T; and V; are the training and test sets, respectively. Any T
or V is represented as a set of pairs {L, Y}, where L is alog and Y
is the set of fault entities (superclass of package, file, and method).
At the i-th time step, the model from step i—1 is updated using the
cumulative training data T.;, and is expected to perform well on
all test sets up to this point, Vi.;. The main problem tackled in this
paper is how to effectively and efficiently conduct continual learning
of fault localization models in industrial software systems.

We assume that the model can access all preceding training
sets at the i-th time step rather than just a subset of them. This
differs from typical continual learning assumptions, where prior
work often presumes that the model cannot directly access past
datasets due to storage constraints [12, 46]. However, in the devel-
opment process, all tests and their corresponding faults are saved
for subsequent review and tracking. This practice is reasonable and
common in real-world scenarios. For instance, the Apache Software
Foundation’s issue tracking system! records nearly all faults and
defects that arise in the software it develops, enabling developers
to more easily track and query existing issues. Having access to the
complete data allows us to achieve better performance.

2.3 Key Observations

Based on the characteristics of software testing and fault localiza-
tion, we observe that there is room to improve the model’s effec-
tiveness in a continual learning scenario in the following aspects:
Observation I: Better feature extraction contributes to the
advancement of representative exemplars selection. Select-
ing representative exemplars from old data for replay is an ef-
fective method to mitigate catastrophic forgetting in continual
learning [12, 45, 46]. Through study cases on the logs, we found
that effective feature extraction is crucial for determining which of

Uhttps://issues.apache.org/jira

https://github.com/pppppkun/Ciallo

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

these samples are the most representative. In the context of fault
localization, selecting representative exemplars is, to some extent,
equivalent to selecting representative faults. Therefore, when fea-
ture extraction is performed, we must not only better represent the
program semantics within the logs but also emphasize the features
that are relevant to the fault. As shown in Figure 2, the calls to
methods my, my and m3 form a loop related to the faulty method
my. If the feature extraction cannot capture the number of method
calls and method calls related to the faulty method, it becomes
impossible to distinguish between different fault scenarios that
are related to the number of loop iterations or whether to call the
faulty method, leading to sub-optimal exemplar selection effective-
ness. In such a case, the prior works [12] that used features such
as term frequency statistics or the probability outputted by the
model [3, 9, 13, 29] struggle to effectively extract the feature and
program semantics. Furthermore, the feature extraction in prior
log-based fault localization work [23, 32] has been relatively coarse,
which only considers coverage information and execution order,
failing to consider fault-related information and the fine-grained
semantics. As a result, the feature extraction methods utilized in
existing methods lead to sub-optimal representative exemplar se-
lection. Thus, for more effective representative exemplars selection
and replay;, it is desirable to design an improved feature extraction
that better represents program semantics and fault-related features.
Observation II: Enhanced learning on unmastered faults
helps to mitigate catastrophic forgetting and acquire new
knowledge. By investigating the distribution of the average sus-
piciousness score of the fault entities for each sample, we found
that both entirely new faults and those forgotten by the model
belong to the unmastered samples. Figure 3 plots the number of
samples at each average suspiciousness score. We observe that the
red-highlighted region contains approximately 85% of all entirely
new and forgotten faults. The average suspiciousness scores for
the fault entities in these samples are exceptionally low, indicating
that both types of faults are almost entirely comprised of samples
that the model has not yet mastered. For faults that the model has
already mastered, it can exhibit strong performance on the corre-
sponding data. For unmastered faults, however, its performance is
relatively poor, and it must intensify its learning on these samples to
achieve better performance. Therefore, during the training process,
the model should continuously focus more on learning the faults it
has not yet mastered, whether they originate from new or old data.
This strategy serves to both mitigate forgetting on previously seen
faults and facilitate the mastery of new faults contained in the new
data, thereby achieving better fault localization performance in a
continual learning setting.

3 Design
3.1 Our Approach

Based on the aforementioned observations, we propose a novel
continual learning framework named Ciarro, designed for fault
localization models in industrial software systems. Specifically, the
design idea of Ciarro is twofold:

Enhancing feature extraction and representative sample se-
lection through fine-grained extraction of program seman-
tics and fault-related features. To better select representative

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

exemplars for replay, we propose to refine the program semantic
extraction process and leverage information related to faulty pro-
gram entities to enhance feature extraction. The intuition here is
that a more refined extraction of program semantics, combined
with an emphasis on fault-related features, leads to a better vector
representation of both the log and its associated fault. Based on
this, given a log from a failed test, we first extract its basic program
semantics. This includes the program entities (e.g., packages, files,
methods) covered by the test and the intra-thread method execu-
tion sequence. As demonstrated in prior work [23], these features
effectively reflect the program semantics in logs and are beneficial
for fault localization. However, relying solely on these features is
relatively coarse, as this approach overlooks both the frequency
of method executions and whether the call sequence involves a
faulty entity. Utilizing the method call frequency provides a more
fine-grained characterization of the differences between various
method calls and the program’s execution state. Simultaneously,
considering whether a faulty entity is involved effectively enriches
different method calls with fault-related information, thereby em-
phasizing the fault features. Therefore, we further extract features
from the frequency of method calls and whether the call sequence
involves the faulty entity. This process serves to both refine the
program semantics and emphasize crucial fault information. We
will present details about how C1aLLo extracts the feature from the
log and selects representative exemplars in Section 3.3.

Adaptive adjusting the loss weights of individual samples
during training based on the confidence calculated by the
model. As stated in Observation II, to improve the model’s over-
all continual learning performance, we want it to focus more on
faults that have not been fully mastered during training. To achieve
this, we propose adaptively adjusting loss weights during the train-
ing process based on the model’s output probabilities. The insight
behind this is that the model’s output probability reflects its con-
fidence in classifying a program entity as faulty; high confidence
suggests the fault is well-mastered, and low confidence suggests
the fault is poorly mastered [30]. Taking inspiration from this,
during training, we calculate the model’s confidence in predict-
ing the ground-truth faulty entity and then use this confidence to
adaptively adjust the weight of the corresponding sample’s loss
value. Through this mechanism, the model is prompted to continu-
ously review old faults where forgetting may have occurred and
to learn new faults, as these samples will exhibit relatively low
confidence. This leads to better continual learning performance. To
better mitigate catastrophic forgetting on the non-replayed sam-
ples and prevent overfitting to the representative exemplars, we
also incorporate regularization to penalize excessive modifications
to the model’s parameters. Further details on the implementation
of adaptive weighted loss and regularization will be discussed in
Section 3.4.

3.2 Overview

In this section, we first provide an overview of the CraLro workflow.
Then, we elaborate on the technical details of each stage in CiaLro.
Figure 4 presents the workflow of CiaLro. Our approach consists
of two stages: training exemplars generation and model iteration.

Learning without Forgetting: Towards Continual learning of Fault Localization Models in Industrial Software Systems

Stage 1: Training Exemplars Generation

- ettt
1 ' : e Y

! & — 1 H H i O

' . : |

S > 1 > O

1 - ; :

- ‘ - O

1] ! .

' Previous Datasets Eeature Extraction Representanvel Exemplars
1 Dyt Selection

- v’

1 -

1 ae Union o

1 — L]

1T s ®

1

: New Coming Training Exemplars

1

1 Dataset D,

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Stage 2: Model Iteration

£I‘{e_zmlarizutitm
ﬁAdaptiveWeighted
Model M;_, Model M,
Adaptive adjust weighted of
- £ each samples during training
o

Training Exemplars

unmastered p=0 mastered p=1

Iteration
t—1

Iteration

Iteration

t+1

Figure 4: The workflow of CiaLro.

The two stages work as follows. Suppose we are at the t-th itera-
tion, with access to the past datasets Dj.;—1, the newly collected
dataset D;, and the model M;_1 from the previous iteration. In
the training exemplars generation stage, we extract features from
the D1.;—1 and then select representative exemplars. Specifically, in
the feature extraction, we convert logs into graph-structured data,
treating program entities as nodes and using coverage information
and the intra-thread method execution sequence as edges. Then,
we increase the weight of edges by the method call frequency and
whether they connect to a faulty node to achieve fine-grained pro-
gram semantics and emphasize fault-related features. Subsequently,
we employ an unsupervised graph learning algorithm to generate
embeddings for these graphs. We then cluster these graph embed-
dings and select representative exemplars from the resulting clus-
ters. Finally, these selected exemplars are combined with the D; to
form the training exemplars. In the model iteration stage, we adjust
the weight of a sample’s corresponding loss based on the model’s
confidence in that sample. As illustrated by the curve, let p denote
the confidence of the model for a sample. The lower the model’s
confidence in a sample, the less it is considered to be mastered, and
thus its corresponding loss weight is set higher, compelling the
model to learn more from this sample. Conversely, for samples with
higher confidence, the model’s focus on them is reduced. Therefore,
through the adaptive weighted loss, we can make the model focus
more on old faults where forgetting has occurred and on new faults
from the latest data. This serves to mitigate forgetting, facilitate
the acquisition of new knowledge, and enhance the effectiveness of
continual learning. To further alleviate forgetting on non-replayed
samples and prevent overfitting to the representative exemplars, we
also employ a regularization term to penalize significant changes in
the model’s parameters. Finally, the model M;_1 is optimized using
a combination of the adaptive weighted loss and the regularization
loss, yielding the updated model M;. Next, we describe each stage
in detail.

3.3 Training Exemplars Generation

3.3.1 Feature Extraction. In the feature extraction stage, we first
extract fine-grained and fault-enhanced program semantics from
the logs in past datasets and convert them into a graph structure.
We then employ an unsupervised graph embedding algorithm to

generate a corresponding vector representation. Below, we explain
in more detail of the feature extraction.
Program Semantic Extraction. First, we extract basic program
semantics from the logs, including the program entities covered by
the test and the intra-thread method execution order. Then, we fur-
ther refine these semantics and incorporate fault-related features by
also extracting the frequency of method calls and whether the call
process involves a faulty entity. The intuition here is that extract-
ing fine-grained program semantics and leveraging fault-related
features enables a better representation of the log and its associated
fault information. By using method call frequency, we can better
differentiate between various method calls and their respective
weights among all calls, thereby achieving a more fine-grained ex-
traction of program semantics. On the other hand, whether a faulty
entity is involved effectively enriches different method calls with
fault-related information, thereby emphasizing the fault features.
This, in turn, allows us to create more effective log embeddings and
facilitate the subsequent selection of representative exemplars.
Specifically, as shown in the feature extraction in Figure 4, we
first convert each log into a corresponding graph structure where
each node represents a program entity, namely a package, a file,
or a method. A dedicated node is also used to represent the log
as a whole. Connections between entities at different hierarchi-
cal levels represent containment relationships and coverage in-
formation, while connections between method nodes represent
the intra-thread method execution sequence. Next, to refine the
program semantics and emphasize fault-related information, we
calculate weights for the method execution edges based on their
call frequency and whether the call involves the faulty method.
More specifically, given a log L, let T, P, F and M respectively
denote the sets of threads, packages, files, and methods which are
formed by extracting ¢, p, f, m from each line [= (t,p, f,m) in L.
Then, let G, represent the graph for log L and the node set of Gy,
is defined as V, = TU P U F UM U {ny}, where n; denote the
special node representing the log itself. Let (u,v) denote node u
point to node v. Then, we represent the containment relationships
and coverage information by constructing (p, f) and (f, m) for
each line, and (ng, p) for all p € P. Next, we represent the intra-
thread method execution sequence by constructing (S lt ,S lt +1)» Where
St=(my,mo,..., my.) denotes the sequence of methods executed
by t and i € [1,k — 1]. k is the length of S*. The edge set E; of G,

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

is constructed by H U I, where H denotes the edges that represent
the containment relationships and coverage information, and I
denotes the edges that represent the intra-thread method execution
sequence. After that, for each (m;, m;) inI, let p denote the number
of times this call sequence appears in the log. The weight w of the
edge (mj, mj) is then calculated by the following formula:

w =log(p) +1log(p) x (I(m; is faulty) +I(m; is faulty)) (1)

Here, I(-) is an indicator function that returns 1 if the condition is
true and 0 otherwise. In addition to reflecting the call frequency, the
edge’s weight is further increased if the method call involves the
faulty method. Through this approach, we can achieve a more fine-
grained extraction of program semantics and utilize fault features
to further increase the weight of certain semantic elements. This
allows the subsequent embedding process to emphasize this fault-
related information, ensuring that the selection of representative
exemplars can cover a more diverse range of samples.
Graph Embedding. After converting the logs into graphs, we
need to further transform these graphs into corresponding vectors
to facilitate the subsequent selection of representative exemplars.
Since we assume access to all past data—a reasonable assumption
in software testing, where all historical test results are preserved
for tracking—we require an efficient embedding algorithm. Further-
more, as the graph embedding process is unlabeled, an unsupervised
algorithm is necessary. Based on these two requirements, we select
Node2Vec as our graph embedding algorithm. Node2Vec [14] is an
effective and efficient unsupervised method that captures both local
and global information within a graph through a weighted random
walk strategy, allowing each node to learn a vector representation
that reflects its role in the network structure. By using Node2Vec,
we can encode the program semantics and fault information em-
bedded in our graphs into corresponding vectors effectively.
Specifically, we first use SentenceBERT [39], a general-purpose
natural language encoding tool, to encode the names of the various
packages, files, methods, and the log itself, as their naming typically
follows natural language conventions. The resulting vectors serve
as the initial features for the corresponding nodes. We then apply
Node2Vec to perform weighted learning on the graph. During this
process, the fine-grained program semantics and fault features are
more effectively embedded into the node vectors via the weighted
random walks. Finally, we obtain a vector representation for the
entire graph by averaging the learned node vectors.

3.3.2 Representative Exemplars Selection. In this step, we select
representative exemplars based on the graph vectors generated in
the preceding step. These exemplars are used to help the model re-
view previously encountered data, thereby preventing catastrophic
forgetting. Thus, the selected representative exemplars must be
sufficiently diverse to cover a variety of faults. To this end, we
first cluster the graph vectors and then perform sample selection.
By clustering, we can partition samples according to different pro-
gram semantics and fault features extracted before, and then select
samples from these different clusters to achieve diversity.

Clustering. We adopt the DBScan algorithm (Density-Based Spa-
tial Clustering of Applications) [8] to cluster the graph vectors of
all past datasets into different groups. The reasons why utilizing
the DBScan are twofold: First, specifying the number of clusters

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

in the feature space is a non-trivial task. This renders clustering
algorithms that require pre-definition of the number of clusters,
such as the K-means algorithm used in previous work [12], unsuit-
able. DBScan is a density-based clustering algorithm, which groups
together data points in high-density regions that are spatially close
together, and thus, it does not need to pre-define the number of
clusters. Second, DBScan has been demonstrated to be effective and
efficient, and has been widely used in many domains [19, 42]. Thus,
we employ DBScan to cluster the graph embeddings.

Exemplars Selection. Based on the feature clusters, we further
identify the representative exemplars. Specifically, assume that after
clustering we have obtained n clusters, from which we need to select
a total of K representative exemplars. First, we count the number of
samples in each cluster to determine how many exemplars should be
selected from it. This allows us to dynamically select samples based
on the size of clusters to ensure more representativeness [5]. More
specifically, if the sample counts in the n clusters are (ci, ¢z, . . ., cn),
we randomly select samples from each cluster i that is proportional
to its size relative to the total number of past samples, |D1.;—1].
The number of samples to select from cluster i is calculated as
K x Ichﬁ Finally, the selected samples are designated as the
representative exemplars and are merged with the new dataset D
to form the training exemplars. Note that throughout the iterative
development process, software undergoes refactoring but retains
much of its previous functionality and logic, rather than being
completely rewritten. Therefore, reusing data from past versions
is a meaningful approach, a conclusion that our experiments also
support. Furthermore, even though the model may learn features
of certain defects that are subsequently fixed in newer versions,
this knowledge does not impair its ability to localize other faults.

3.4 Model Iteration

Adaptive Weighted Loss. In this step, we adaptively determine
the loss weight for each sample by assessing the model’s degree of
mastery over it. The intuition here is that mitigating forgetting and
mastering new knowledge can be unified into a single objective of
enhancing the model’s learning on samples it has not yet mastered.
To achieve this, we estimate the model’s degree of mastery over
a sample based on its confidence (i.e., suspiciousness score) for
each faulty entity within that sample [30]. Specifically, let Y =
(e1, €z, ...,en) be the set of all ground-truth faulty entities for a
given sample, and let P = (p1, p2, ..., pn) be the corresponding
suspiciousness scores calculated by the model for these entities. p;
is between 0 and 1. The weight w for this sample is then given by

w=(1-pi)¥, @)

S =

n
i=1
where y is a focusing parameter that controls the degree to which
the model attends to unmastered versus mastered faults. The larger
the value of y, the more the model will neglect samples that are
already well-mastered. When the model’s degree of mastery over
the involved faulty entities is higher (i.e., higher confidence), the
weight calculated will be smaller. Conversely, the weight will in-
crease. Through Eq. 2, we can dynamically adjust the loss weight
during the training process based on the model’s degree of mastery
over a sample, thereby achieving more effective continual learning.

Learning without Forgetting: Towards Continual learning of Fault Localization Models in Industrial Software Systems

Finally, let £; be the loss calculated by the model on this sample,
and the corresponding weight is w;. Then the adaptive weighted
loss is defined as

n
LAdaptiveWeighted = Z wiLi, (©))
i=1

where n is the number of training exemplars. In this way, we can
enhance the model’s learning on samples it has not yet mastered,
which in turn mitigates forgetting and facilitates the acquisition of
new knowledge, making continual learning more effective. Note
that in learning-based fault localization, various loss functions can
be used to calculate £, such as listwise, pairwise, and pointwise
loss function [32]. Our method operates on the model’s final out-
putted suspiciousness scores and is therefore not coupled with any
particular loss function. This makes our approach adaptable and
compatible with these different loss formulations.
Parameter Regularization. Since we only select a subset of repre-
sentative exemplars from past data for replay, the model may expe-
rience forgetting on the non-replayed samples or overfit to the rep-
resentative exemplars, leading to sub-optimal effectiveness [12, 15].
Therefore, we add a quadratic penalty term to the loss to restrict
large modifications to the network weights that are crucial for
previous data. Specifically, our regularization loss is formulated as

LRegularization = Z Fi(0ri - gtfl,i)z (4)
i

Here, F; represents the importance of parameter i for previous
knowledge, and 6;; is the value of parameter i at iteration t. In
Ciarro, we compute F; using the Fisher Information Matrix [11]
that F; = V2.L(x, y|0;—1,;) where V2 is the Laplace operator. The
reason for choosing the Fisher Information Matrix is that it is simple,
efficient, and widely used in continual learning to estimate the effect
of each sample on the parameters [12, 20, 46]. The use of a squared
penalty results in a smoother and more stable optimization process,
thereby enhancing the effectiveness of the regularization [16, 21].

More specifically, at the end of the i—1-th iteration, we esti-
mate how much information each model parameter holds about
the learned faults using the current training exemplars through
the Fisher Information Matrix. Then, in the i-th iteration, we can
use this matrix to constrain parameter modifications. That is, if
a parameter was deemed significant in the i—1-th iteration, any
subsequent significant changes to it will be penalized more heavily,
thereby reducing the model’s catastrophic forgetting. The final loss
L we use to optimize the model M;_1 is

L= LAdaptiveWeighted + LRegularizatian (5)

4 Evaluation
We evaluate C1aLLo on the following research questions:

e RQ1: How does C1aLLO’s effectiveness compare to that of state-
of-the-art techniques on continual learning? RQ1 consists of the
following three sub-RQs:

— RQ1.1: Overall effectiveness on all datasets.
— RQ1.2: Effectiveness in learning from new data.
— RQ1.3: Effectiveness in mitigating forgetting.

e RQ2: How do different components and main parameters within

Ciarro affect its overall effectiveness?

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

e RQ3: How does the training efficiency of CiALLo compare to
other techniques?

4.1 Experimental Setup

Benchmark. To evaluate our approach within the backdrop of
large-scale software and system testing, we collaborated with our
industrial partner, which operates multiple digital product lines
worldwide. They provided us with logs from failed system tests for
eleven software projects, collected over one year. Each software
project consists of over one million lines of code and contains, on
average, 170 packages, 2,000 files, and 50,000 methods. Each log
corresponds to multiple faulty methods. We have a total of 3,800
logs, with an average of 101.24 threads, 122.68 packages, 361.28
files, and 1057.91 methods involved in each log. The engineers
partitioned this data into 8 iterations based on the development
timeline. Each iteration involves 475 logs on average, which we
then randomly split into training and test sets using a 9:1 ratio.
Our tool can also be applied to open-source software, provided that
the software has been deployed, is in continuous operation, and
requires log-based fault localization.

Baselines. To the best of our knowledge, we are the first to at-
tempt continual learning for fault localization. Therefore, we select
representative baselines from the continual learning literature and
related work on continual learning for code models as our compar-
ison methods. Additionally, we also include DeepGini, a represen-
tative method from test case selection for comparison. Specifically,
we select the following methods as our baselines:

eUpper retrained the model from scratch on the current and all
historical datasets. Following prior work [12, 46], we consider this
as the performance upper bound in our scenario.

oFT directly fine-tune the model only on the new data at each
iteration.

eEMR [45] randomly selects a subset of past data and combines it
with the new data to fine-tune the model at each iteration.

eEWC [20] add regularization item through Fisher Information
Matrix when fine-tuning on new data at each iteration.
eREPEAT [12] select representative exemplars for replay based on
TF-IDF, K-means clustering, and model loss, and applies regulariza-
tion based on the difference between old and new data.
eDeepGini [9] assesses sample uncertainty based on the model’s
output probabilities to select the most valuable samples, which are
then combined with new data for replay.

We evaluate the effectiveness of our approach and the baselines
on Falcon [23], a state-of-the-art backbone for log-based fault local-
ization in large-scale software and system testing. Falcon operates
by first converting logs into graphs and then applying contrastive
learning on these graphs to perform fault localization, representing
the current state-of-the-art framework in this domain.
Evaluation Metric. Following previous work, we adopt Recall at
Top-N (N=1,3,5), Mean First Rank (MFR), and Mean Average
Rank (MAR) as our evaluation metrics. Recall at Top-N denotes the
proportion of all failed tests in which at least one faulty element is
located within the first N positions. MFR measures the mean rank
of the first faulty element across all failed tests. MAR is the mean
of the average ranking of all the faulty entities of all failed tests.
Higher Top-N and lower MFR and MAR suggest that the faulty

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

entities are located closer to the top of the ranked list, indicating
better localization performance. We use the worst ranking for the
tied elements that have the same suspiciousness scores.

To evaluate the model’s forgetting of old data, following previ-
ous work [46], we use the Forgetting Measure (FM) as a metric.
Specifically, let f; i denote the absolute difference between the best
performance the model previously achieved on the j-th dataset and
its performance on the j-th dataset at the k-th iteration. The FM
at the k-th iteration is then given by ﬁ Zﬁ{z—ll k- A smaller FM
value indicates a better ability to mitigate forgetting.

For RQ1.1, we evaluate the overall effectiveness of different meth-
ods by their performance across all datasets after the entire con-
tinual learning process, i.e., all iterations, is complete. For RQ1.2,
we assess the model’s effectiveness in learning new knowledge by
recording its performance on the new dataset after each iteration,
and then averaging these results across all iterations. For RQ1.3,
we evaluate the model’s effectiveness in mitigating forgetting by
calculating the FM on various metrics during each iteration, and
then averaging these FM results over all iterations.
Implementation. We build CiarLo based on PyTorch Geomet-
ric [10] and Scikit-Learn [36]. We use the open-source implementa-
tion [7] of Node2Vec [14] to perform graph embedding. C1aLLO can
scale to larger datasets because its feature extraction stage is inher-
ently parallelizable. Consequently, we can employ multi-threading
and GPU acceleration for program semantic extraction and graph
embedding, allowing for efficient representative sample selection.
Furthermore, during the model training phase, the adaptive weight
for each sample within a mini-batch can be computed in parallel
before the optimization step, thereby reducing time overhead.

We employed grid search to determine the optimal parameter
combination. We set the focusing parameter y in adaptive weighted
loss to 2. We also explore the influence of the main parameters in
CiaLLo in the ablation study. For the baselines, we directly adopt
their open-source implementations and empirically tune the hyper-
parameters by grid search because the original hyperparameters
haven’t been tested on our task. For all methods that need replay, we
follow prior work [12] that sets the size of replayed exemplars K to
1% of the whole training data for comparison, which is considerably
smaller than the whole size of the training data. We perform fault
localization at the method level. Furthermore, all experiments are
conducted with a fixed random seed to reduce variations across the
experiments. Each method is trained until convergence to achieve
optimal effectiveness and efficiency. More specifically, when the
model converges, we select the checkpoint from the epoch that
yielded the lowest loss as the final model. The final training time is
recorded as the total time consumed from the start of training up
to that epoch.

All experiments are conducted on a workstation with AMD
Ryzen 9 3900XT, 32GB memory, and two RTX 4090 GPUs, running
Ubuntu 20.04.

4.2 ROQ1: Effectiveness

In this RQ, the primary objective is to evaluate the effectiveness of
the CiaLLo in continual learning. We conduct a comparative analy-
sis of C1aLLO against 6 baselines outlined in Section 4.1. Specifically,

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

Table 1: Performance of different baselines across all datasets
after continual learning,.

Techniques Top-1(T) Top-3(f) Top-5(f) MFR({) MAR()

Upper 0.68 0.75 0.81 147 20.1
No-update 0.36 0.4 0.46 473 52.8
FT 0.44 0.51 0.59 38.4 43.0
EMR 0.48 0.54 0.59 347 39.2
EWC 0.42 0.49 0.55 418 9.2
REPEAT 0.52 0.6 0.67 246 32.8
DeepGini 0.50 0.56 0.61 27.2 36.2
CraLLo 0.61 0.68 0.74 19.4 24.9

we evaluate the effectiveness of CiarLo from the following three
perspectives.

RQ1.1: Overall Effectiveness. In RQ1.1, we evaluate the effec-
tiveness of different methods based on their overall performance
across all datasets after the continual learning is complete (i.e., af-
ter all iterations have finished). Table 1 presents the experimental
results. From the table, we observe that: First, First, the no-update
method achieved the lowest effectiveness among all approaches.
For the no-update model, we train it on the data from the first
iteration and then freeze its parameters. This result underscores
the necessity of retraining or continual learning; otherwise, the
model will become unusable during the software iteration process.
Second, compared to the straightforward method FT that directly
fine-tunes the model on new data, CiaLLO achieves more effec-
tive continual learning. Specifically, C1aLLo improves upon FT by
38.63%, 33.33%, 25.42%, 49.47% and 42.09% on Top-1, Top-3, Top-5,
MFR, and MAR, respectively. These results indicate that CiarrLo can
effectively improve the model’s performance in the continual learn-
ing scenario compared to only fine-tuning. Third, compared to the
baseline methods, C1aLLO consistently outperforms the other ap-
proaches across various metrics, and CIALLO is also the method that
achieves performance closest to the upper bound among all base-
lines studied. Notably, C1aLLo achieves Top-1 localization accuracy
of 0.61, representing significant improvements of 27.08%, 45.23%,
17.30%, 21.99% over the EMR, EWC, REPEAT, and DeepGini, respec-
tively. Additionally, MFR and MAR metrics also exhibit substantial
enhancements, with C1aLLo showing an 21.13% improvement in
MFR and a 24.08% improvement in MAR compared to the best-
performing baseline, REPEAT. This performance improvement can
be partially attributed to the feature extraction and representative
sample selection methods of Ciarro, which are better suited for
continual learning in the context of fault localization. REPEAT uti-
lizes TF-IDF for feature extraction, while DeepGini only uses the
model’s probability. The former struggles to capture program se-
mantics and fault characteristics from logs, whereas the latter may
lead to the selection of representative exemplars with repetitive
features. In contrast, CIALLO extracts fine-grained program seman-
tics from logs and enhances the weights of specific calls using fault
features, thereby effectively extracting features and boosting its
continual learning performance.

RQ1.2: Effectiveness in learning new data. In RQ1.2, we eval-
uate the ability of different continual learning methods to learn
from new data by assessing their performance on new data after
each iteration and then averaging these results across all iterations.
Table 2 shows the experimental results. From the table, we observe
that C1aLLo also surpasses the other methods in its performance on

Learning without Forgetting: Towards Continual learning of Fault Localization Models in Industrial Software Systems

Table 2: Average performance of different baselines on new
datasets after each iteration.

Techniques Top-1(1) Top-3(f) Top-5(f) MFR(l) MAR()

Upper 0.62 0.69 0.77 17.6 25.8
FT 0.47 0.56 0.65 31.8 37.4
EMR 0.39 0.44 0.53 39.7 46.8
EWC 0.33 0.41 0.47 45.8 54.3
REPEAT 0.41 0.52 0.61 33.1 39.5
DeepGini 0.43 0.51 0.59 35.3 42.8
CiaLrLo 0.54 0.64 0.72 24.8 30.6

Table 3: Forgetting measure on old data for different baselines
after each iteration. FM;{, FM;3, FM;5, FMp, and FM, denote
the forgetting measures on Top-1, Top-3, Top-5, MFR, and
MAR, respectively.

Techniques FM¢1 () FMyp3 (1) FMes () FMp() FMa ()

Upper 0.01 0.01 0.02 12 2.9
FT 0.17 0.22 0.25 124 168
EMR 0.12 0.16 0.14 9.7 11
EWC 0.14 0.17 0.15 104 135
REPEAT 0.09 0.10 0.08 6.1 8.7
DeepGini 0.11 0.12 0.12 63 9.4
C1aLLo 0.04 0.06 0.05 45 6.2

learning new knowledge when compared to the studied baselines.
Specifically, the improvements of CiaLro over all the baselines are
remarkable, ranging from 14.89% to 63.63% on Top-1, ranging from
14.28% to 56.09% on Top-3, ranging from 10.76% to 53.19% on Top-5,
ranging from 22.01% to 45.85% on MFR, and ranging from 18.18% to
43.64% on MAR. The results underscore C1aLLO’s effectiveness in
learning the new data compared to other studied baselines across
different iterations.

RQ1.3: Effectiveness in mitigating forgetting. In RQ1.3, we
evaluate the effectiveness of different baselines in mitigating for-
getting during the continual learning process by measuring the
FM at each iteration. The FM assesses how much a model’s perfor-
mance on a specific metric for a given dataset has dropped after
the current iteration compared to its previous best performance,
which helps us evaluate the phenomenon of model forgetting. A
large FM indicates that the model has suffered from catastrophic
forgetting. We calculate the FM for various metrics at each round
of iteration and then average the results across all iterations for our
evaluation. The experimental results are shown in Table 3, where
each column represents the average performance forgotten by the
model on that specific metric. From the table, we have the following
observation: First, simply fine-tuning on new data leads to severe
forgetting. Specifically, the FT method’s performance dropped by
0.17, 0.22, 0.25, 12.4, and 16.8 on Top-1, Top-3, Top-5, MFR, and
MAR, respectively. This indicates that catastrophic forgetting also
occurs during the iterative training of fault localization models.
This is because FT is only fine-tuned on new data without any
review of old data. This leads to FT being more effective at learning
new faults but suffering from catastrophic forgetting. For exam-
ple, in Table 2, we observe that FT is one of the best-performing
methods; its Top-1 accuracy even surpasses that of REPEAT and
DeepGini. However, in Tables 1 and 3, FT’s effectiveness is severely
compromised due to forgetting. Second, compared to other con-
tinual learning methods, C1aLLo achieves the best effectiveness
in resisting catastrophic forgetting. Particularly, compared to the

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 4: The effectiveness of different variants.

Techniques Top-1(f) Top-3(f) Top-5(1) MFR(l) MAR(])

CIALLOe 0.56 0.60 0.68 22.1 29.4
CIALLOf 0.53 0.58 0.62 24.7 30.5
CIALLOg 0.51 0.55 0.64 26.7 354
CiaLLop 0.55 0.61 0.67 22.5 30.1
CiaLLo 0.61 0.68 0.74 19.4 24.9
0.610 10
— y=1
oe0 590 o — y=2
5050 v=3
g bs . y=4
o
éass § y=5
< 40 o
o osa R
5
F s
02
030 490
T B 3 : 3 0o o o o6 o 1o
Yy Confidence of model

Figure 5: The effect of y. Figure 6: The weight under

different y.

o625
0600
0575

0550

525

Top-1

0500
0475

0450 —e— REPEAT
oazs Canto

o s To 20

Figure 7: The effect of K.

best-performing baseline, REPEAT, CiaLLo shows an improvement
of 55.55%, 40%, 37.5%, 26.29% and 28.73% on the FM for Top-1, Top-3,
Top-5, MFR, and MAR. Similar trends are also observed among the
other baselines. Based on the experimental results from RQ1.2 and
RQ1.3, C1aLro not only effectively resists forgetting during the con-
tinual learning process but also excels at learning new knowledge.
This indicates that C1aLLO’s adaptive weight loss function is better
than the original loss function at enabling the model to focus on
unmastered samples, including both forgotten and new faults. In
contrast, REPEAT assigns the same weight to all samples, which
leads to sub-optimal effectiveness compared to C1aLro.

To further confirm the observations in RQ1, we have followed
previous works [23, 32] to perform the Wilcoxon signed-rank test [48]
with Bonferroni corrections [6] to investigate the statistical signifi-
cance between C1aLLO and other baselines. The results show that
CiaLro is significantly better than all studied baselines at the sig-
nificance level of 0.05.

4.3 RQ2: Ablation Study

In this RQ, we conduct a series of ablation studies to further ana-
lyze the impact of each component of CiarrLo and study the main
parameters in C1arLo. We adopt the same experimental setup as in
RQ1.1, evaluating the model’s effectiveness on the entire dataset
after all iterations are complete.

Effect of different components. In particular, we consider the
following four variants of CiaLro: CiALLo, removes the weight
derived from the method call frequency (i.e., the first term of Eq. 1).
CiaLLoy removes the weight derived from the fault entities (i.e., the

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Table 5: Training time cost of studied techniques. CE presents
the carbon emissions per iteration for each method.

Techniques ~ Cost CE |Techniques Cost CE |Techniques Cost CE

Upper 4h57min 1906g EWC
REPEAT 2h33min 982g EMR
CraLro 2h43min 1046g

1h47min 687g FT 1h21min 520g
2h14min 860g | DeepGini 2h03min 789g

second term of Eq. 1). C1ALLO, removes the adaptive weight from
the loss function. C1aLLo, removes the regularization item from the
loss function. Table 4 summarizes the study results, and we have
the following observations. First, removing any single component
leads to a noticeable decline in the effectiveness of Ciarro. This
indicates that each module of CiaLLo contributes to its effective-
ness in continual learning. Second, when comparing C1aLLo s and
CiaLLo,, we find that removing the weights derived from fault
nodes results in a more significant performance loss. Specifically,
the Top-5 accuracy of CIALLOf decrease by 8.82% compared to
CiaLLo,. This suggests that utilizing fault nodes to increase the
weights of relevant program semantics is more effective than using
method call frequency. Third, removing the adaptive loss weight
causes the most substantial drop in performance. In particular, com-
pared to C1aLLO, the Top-1, Top-3, and Top-5 accuracies of CIALLO,
decrease by 16.39%, 19.11% and 13.51%, respectively. This further
demonstrates that our adaptive weight loss can effectively help
mitigate catastrophic forgetting and better learn new knowledge.

Effect of focusing parameter y. Furthermore, we conducted a
parameter sensitivity analysis on the focusing parameter y in the
adaptive loss weight. y is a key hyperparameter in our method.
We evaluated y with values ranging from 1 to 5. The experimental
results are shown in Figures 5 and 6. Figure 5 presents the Top-1
accuracy of Ciarro under different y values. Figure 6 illustrates
the weight assigned for different model confidences under varying
y. From Figure 6, we can observe that as y increases, the weight
assigned for the same level of confidence decreases, which com-
pels the model to focus more on samples with lower confidence.
However, when y is very large, it causes the model to nearly ignore
high-confidence samples, leading to a drop in effectiveness. This
is also reflected in Figure 5. We found that as y becomes larger,
the model’s Top-1 accuracy declines significantly, and the best
effectiveness is achieved when y is set to 2.

Effect of number of representative exemplars K. We also ana-
lyze the number of representative exemplars K. Specifically, we com-
pared the effectiveness of CiarLo and the best-performing method,
REPEAT, under different values of K. Following prior work [12],
we evaluated the Top-1 accuracy for K values of 0.1%, 0.5%, 1%,
and 2% on the whole training data. The experimental results are
shown in Figure 7. From the figure, we observe that the Top-1 ac-
curacy of both methods improves as K increases. It is reasonable as
the model’s ability to mitigate forgetting becomes stronger with
an increasing number of replay samples. CiarLo performs better
than REPEAT across all different values of K, which confirms the
effectiveness of our method.

4.4 RQ3: Efficiency

This RQ empirically analyzes the efficiency of Ciarro. Table 5
presents the average time cost and carbon emissions of a single

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

Table 6: Compare CiaLLo to Upper under the same time
budget.

Techniques Top-1(T) Top-3(1) Top-5(f) MFR(l) MAR()

Upper 0.56 0.63 0.70 22.2 28.7
CiaLrLo 0.61 0.68 0.74 19.4 24.9

iteration in the continual learning process. We refer to the ISO/IEC
21031:2024 standard? to calculate the carbon emissions As shown
in the table, CIALLO requires more time to complete one iteration
and produce more carbon compared to the studied baselines. This
is mainly because C1aLLO needs to build a graph from the log and
regenerate graph embeddings using Node2Vec and select represen-
tative exemplars during each round of iteration. Nevertheless, it is
important to emphasize that CiaLLo achieves significantly better
performance in locating faults than the baselines, as demonstrated
in Section 4.2. Therefore, we believe such a time cost of CIALLO is
worthwhile for achieving better continual learning effectiveness.
Furthermore, compared to the upper, C1aLro still saves approxi-
mately half of the training time and half the carbon emissions, and
this improvement will be even more pronounced in scenarios with
larger data volumes, striking a balance between performance and
energy consumption. We also conducted an experiment to evaluate
the effectiveness of the retraining method versus CiaLLo under the
same time budget. Specifically, we constrained the training time
for retraining to not exceed that of C1aLLo, as CIALLO requires less
training time. The experiment results in Table 6 show that under the
same time budget, C1aLLO performs better than full-data retraining,
indicating that C1aLLo provides a practical speedup.

5 Discussion
5.1 Threats to Validity

The main threat to internal validity lies in the correctness of the
implementation of C1arLo, the compared approaches, and exper-
imental scripts. To reduce this threat, we adopt the open-source
implementations of the compared approaches, build C1arrLo based
on widely used libraries, and carefully check the source code of
Ciarro and the experimental scripts. The main threat to external
validity lies in the selection of subjects in our study. To mitigate this
threat, we perform experiments on an industrial dataset provided
by our industrial partner, which contains 3800 logs collected from
8 iterations over one year, sourced from 11 large-scale software
systems each exceeding one million lines of code. Furthermore,
we compare C1ALLO with 6 continual learning baselines in our ex-
periments. Moreover, we collected software from diverse product
lines, and C1ALLO’s design is independent of specific development
guidelines or practices, so it should remain effective in other or-
ganizations with different development habits. Additionally, while
development style may slightly alter how a fault manifests, the
fundamental nature of different fault types is largely consistent,
supporting the broader applicability of our approach. The main
threat to conclusion validity lies in whether our conclusions are
statistically reliable. To reduce this threat, apply statistical hypothe-
sis testing to our findings. Specifically, we followed previous works

https://www.iso.org/standard/86612.html

Learning without Forgetting: Towards Continual learning of Fault Localization Models in Industrial Software Systems

to perform the Wilcoxon signed-rank test with Bonferroni correc-
tions to investigate the statistical significance between CiaLro and
other baselines. The main threat to construct validity lies in the
parameters in C1ALLO and the metrics used in our experiments. To
reduce the threat from the parameters in C1aLLO, we present the
detailed parameter setting in our project website and investigate
the impact of the main parameters in Section 4.3. To reduce the
threat from metrics, we employed various metrics that are widely
used in prior fault localization studies and continual learning [46].

5.2 Implications for SE

While the growing accumulation of data from SE tasks has led
to the emergence of numerous Al for SE methods, existing work
has primarily focused on devising better training methodologies
or more effective data processing techniques. However, given the
dynamic nature of software and the real world, the maintenance and
iteration of these software systems also pose a significant challenge.
In addition, we show that simply applying continual learning to
the SE domain yields only sub-optimal effectiveness. To achieve
high effectiveness on SE tasks, tailored designs for SE are required.

6 Related work

Fault Localization. The goal of automated fault localization (FL)
methods is to automatically identify faulty program entities. Gener-
ally, FL techniques utilize static or dynamic information to calculate
a suspiciousness score and then rank program entities based on
this score. Currently, FL methods can be classified into several cate-
gories, including spectrum-based [1, 4, 40], mutation-based [34, 35],
change-based [2, 47], and learning-based [23, 25, 32] approaches.
Among these, spectrum-based and learning-based methods are the
most representative techniques. Spectrum-Based fault localization
(SBFL) [1, 4, 17, 40, 49, 50, 53] methods count the number of passed
and failed test cases that cover each program entity and then use a
specific formula to calculate that entity’s suspiciousness score. The
key insight of such methods is that entities covered by more failed
tests and fewer passed tests are more likely to be faulty. Learning-
based fault localization [23-27, 32, 33, 37, 44, 54, 55] are currently
the most popular FL techniques. They leverage deep learning to
better learn fault-related features or combine features from differ-
ent dimensions to achieve superior localization performance. For
example, Falcon [23] utilizes contrastive learning to better leverage
program semantics and embed them from logs for FL in large-scale
software. Legato [24] concentrates on leveraging semi-supervised
learning to enhance the performance of graph-learning-based fault
localization models when labeled samples are insufficient. Com-
pared with Falcon and Legato, C1aLLo addresses a different scenario
that uses continual learning to improve the effectiveness of fault
localization models in the context of software evolution while si-
multaneously reducing the overhead of model training.

Continual Learning. Continual learning addresses the challenge
of catastrophic forgetting, where acquiring new knowledge de-
grades previously learned information [46]. Continual learning
methods can be divided into two main categories: replay-based
and regularization-based approaches. Replay-based methods [31,
38, 43, 45] mitigate model forgetting by accessing past knowledge
and mixing it with new data during training. Regularization-based

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

methods [20, 22, 28, 41] impose constraints on the learning pro-
cess to protect learned knowledge, typically by adding a penalty
to the loss function. In software engineering, work related to con-
tinual learning has primarily focused on the iteration of code mod-
els [12, 51] and anomaly detection models [52], as well as on test
case selection [3, 9, 13, 29]. For example, in the domain of code
models, REPEAT [12] was the first work to focus on continual
learning. In anomaly detection, recent studies [52] have focused
on the data shift problem between training and test sets, viewing
test case selection as a continual learning strategy to mitigate this
issue. Test case selection methods typically estimate uncertainty
based on the model’s output to select the most valuable samples,
which are then used to train the model, thereby achieving continual
learning. For instance, DeepGini [9] assesses sample uncertainty us-
ing the model’s probability distribution to select samples and then
fine-tunes the model on these samples to boost model performance.

7 Conclusion

In this paper, we propose CIALLO, a novel continual learning frame-
work specifically designed for large-scale software fault localiza-
tion. In each iteration of continual learning, CiaLLoO first extracts
fine-grained program semantics from the logs of past datasets and
enhances them using fault characteristics. It then uses an unsu-
pervised graph embedding algorithm to obtain corresponding em-
beddings and selects representative exemplars via clustering. After
mixing the representative exemplars with new data to form the
training exemplars, CIALLO estimates its degree of mastery over
each sample based on the model’s suspiciousness scores for the
faulty entities. It increases the weights of samples with a lower
degree of mastery, enabling the model to focus more on learning
from them, which in turn mitigates catastrophic forgetting and
facilitates the learning of new knowledge. Furthermore, C1ALLO
also employs regularization to prevent overfitting on the training
exemplars and to mitigate the forgetting of old data not included in
the representative samples. The experimental results demonstrate
the effectiveness of C1aLLo in large-scale software fault localization
under the continual learning setting.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback.
This research is supported by the National Natural Science Founda-
tion of China (62372227 and 62402214), the Natural Science Foun-
dation of Jiangsu Province (BK20241194), the China Postdoctoral
Science Foundation (2025T180420, 2025M781473), and the Postgrad-
uate Research & Practice Innovation Program of Jiangsu Province
(KYCX25_0368). Zhong Li is also supported by the Postdoctoral Fel-
lowship Program of CPSF (GZB20250386) and the Jiangsu Funding
Program for Excellent Postdoctoral Talent (2025ZB317).

References

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation of
Similarity Coefficients for Software Fault Localization. In PRDC. IEEE Computer
Society, 39-46.

[2] AnRan Chen, Tse-Hsun (Peter) Chen, and Junjie Chen. 2022. How Useful is Code
Change Information for Fault Localization in Continuous Integration?. In ASE.
ACM, 52:1-52:12.

[3] Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and
Peng Cheng. 2023. QuoTe: Quality-oriented Testing for Deep Learning Systems.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21

[22]

[23]

[24]

[25]

[26

[27]

[28

[29

[31]

[32

ACM Trans. Softw. Eng. Methodol. 32, 5 (2023), 125:1-125:33.

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A. Brewer.
2002. Pinpoint: Problem Determination in Large, Dynamic Internet Services. In
DSN. IEEE Computer Society, 595-604.

William G. Cochran. 1977. Sampling Techniques, 3rd Edition. John Wiley.

Olive Jean Dunn. 1961. Multiple comparisons among means. Journal of the
American statistical association 56, 293 (1961), 52-64. https://doi.org/10.2307/
2282330

Eliorc. 2025. Python3 implementation of the node2vec algorithm. https://github.
com/eliorc/node2vec [Online; accessed 9-July-2025].

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In KDD. AAAI Press, 226-231.

Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen.
2020. DeepGini: prioritizing massive tests to enhance the robustness of deep
neural networks. In ISSTA. ACM, 177-188.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Ronald A Fisher. 1922. On the mathematical foundations of theoretical statistics.
Philosophical transactions of the Royal Society of London. Series A, containing
papers of a mathematical or physical character 222, 594-604 (1922), 309-368.
Shuzheng Gao, Hongyu Zhang, Cuiyun Gao, and Chaozheng Wang. 2023. Keeping
Pace with Ever-Increasing Data: Towards Continual Learning of Code Intelligence
Models. In ICSE. IEEE, 30-42.

Xinyu Gao, Yang Feng, Yining Yin, Zixi Liu, Zhenyu Chen, and Baowen Xu. 2022.
Adaptive Test Selection for Deep Neural Networks. In ICSE. ACM, 73-85.
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. ACM, 855-864.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and
Jie Zhou. 2020. Continual Relation Learning via Episodic Memory Activation and
Reconsolidation. In ACL. Association for Computational Linguistics, 6429-6440.
Arthur E. Hoerl and Robert W. Kennard. 2000. Ridge Regression: Biased Estima-
tion for Nonorthogonal Problems. Technometrics 42, 1 (2000), 80-86.

James A. Jones, Mary Jean Harrold, and John T. Stasko. 2002. Visualization of
test information to assist fault localization. In ICSE. ACM, 467-477.

Chris F. Kemerer and Sandra Slaughter. 1999. An Empirical Approach to Studying
Software Evolution. IEEE Trans. Software Eng. 25, 4 (1999), 493-509.

Kamran Khan, Saif ur Rehman, Kamran Aziz, Simon Fong, Sababady Sarasvady,
and Amrita Vishwa. 2014. DBSCAN: Past, present and future. In ICADIWT. IEEE,
232-238.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2016. Overcoming catastrophic forgetting in neural networks. CoRR
abs/1612.00796 (2016).

Anders Krogh and John A. Hertz. 1991. A Simple Weight Decay Can Improve
Generalization. In NIPS. Morgan Kaufmann, 950-957.

Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. 2019. Overcoming Cata-
strophic Forgetting With Unlabeled Data in the Wild. In ICCV. IEEE, 312-321.
Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li. 2025. Enhancing Fault
Localization in Industrial Software Systems via Contrastive Learning. In ICSE.
IEEE, 691-703.

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li. 2025. Improving Graph
Learning-Based Fault Localization with Tailored Semi-supervised Learning. Proc.
ACM Softw. Eng. 2, FSE, Article FSE069 (June 2025), 23 pages.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Meoller
(Eds.). ACM, 169-180

Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization. Proc. ACM Program. Lang. 1, OOPSLA (2017), 92:1-92:30.
Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Fault Localization with Code
Coverage Representation Learning. In ICSE. IEEE, 661-673.

Zhizhong Li and Derek Hoiem. 2016. Learning Without Forgetting. In ECCV (4)
(Lecture Notes in Computer Science, Vol. 9908). Springer, 614-629.

Zhong Li, Zhengfeng Xu, Ruihua Ji, Minxue Pan, Tian Zhang, Linzhang Wang,
and Xuandong Li. 2024. Distance-Aware Test Input Selection for Deep Neural
Networks. In ISSTA. ACM, 248-260.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. In ICCV. IEEE Computer Society, 2999—
3007.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient Episodic Memory
for Continual Learning. In NIPS. 6467-6476.

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In ESEC/SIGSOFT FSE. ACM, 664-676.

Chun Li, Hui Li, Zhong Li, Minxue Pan, and Xuandong Li

Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022.
Improving Fault Localization and Program Repair with Deep Semantic Features
and Transferred Knowledge. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
1169-1180.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mu-
tants: Mutating Faulty Programs for Fault Localization. In ICST. IEEE Computer
Society, 153-162.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Softw. Test. Verification Reliab. 25, 5-7 (2015), 605-628.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Md Nakhla Rafi, Dong Jae Kim, An Ran Chen, Tse-Hsun (Peter) Chen, and Shaowei
Wang. 2024. Towards Better Graph Neural Network-Based Fault Localization
through Enhanced Code Representation. Proc. ACM Softw. Eng. 1, FSE (2024),
1937-1959.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H.
Lampert. 2017. iCaRL: Incremental Classifier and Representation Learning. In
CVPR. IEEE Computer Society, 5533-5542.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP/IJCNLP (1). Association for Computa-
tional Linguistics, 3980-3990.

Sofia Reis, Rui Abreu, and Marcelo d’Amorim. 2019. Demystifying the Com-
bination of Dynamic Slicing and Spectrum-based Fault Localization. In IJCAL
ijcai.org, 4760-4766.

Hippolyt Ritter, Aleksandar Botev, and David Barber. 2018. Online Structured
Laplace Approximations for Overcoming Catastrophic Forgetting. In NeurIPS.
3742-3752.

Erich Schubert, Jérg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19:1-19:21.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim. 2017. Continual
Learning with Deep Generative Replay. In NIPS. 2990-2999.

Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 -
14, 2017, Tevfik Bultan and Koushik Sen (Eds.). ACM, 273-283.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and
William Yang Wang. 2019. Sentence Embedding Alignment for Lifelong Re-
lation Extraction. In NAACL-HLT (1). Association for Computational Linguistics,
796-806.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. 2024. A Comprehensive
Survey of Continual Learning: Theory, Method and Application. IEEE Trans.
Pattern Anal. Mach. Intell. 46, 8 (2024), 5362-5383.

Ming Wen, Junjie Chen, Yonggiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2021. Historical Spectrum Based Fault Localization. IEEE
Trans. Software Eng. 47, 11 (2021), 2348-2368.

Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics: Methodology and distribution. Springer, 196-202. https:
//doi.org/10.1007/978-1-4612-4380-9_16

W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The DStar Method
for Effective Software Fault Localization. IEEE Trans. Reliab. 63, 1 (2014), 290-308.
Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
theoretical analysis of the risk evaluation formulas for spectrum-based fault
localization. ACM Trans. Softw. Eng. Methodol. 22, 4 (2013), 31:1-31:40.

Prateek Yadav, Qing Sun, Hantian Ding, Xiaopeng Li, Dejiao Zhang, Ming Tan,
Parminder Bhatia, Xiaofei Ma, Ramesh Nallapati, Murali Krishna Ramanathan,
Mohit Bansal, and Bing Xiang. 2023. Exploring Continual Learning for Code
Generation Models. In ACL (2). Association for Computational Linguistics, 782—
792.

Jiongchi Yu, Xiaofei Xie, Qiang Hu, Bowen Zhang, Ziming Zhao, Yun Lin, Lei Ma,
Ruitao Feng, and Frank Liauw. 2025. CAShift: Benchmarking Log-Based Cloud
Attack Detection under Normality Shift. Proc. ACM Softw. Eng. 2, FSE, Article
FSE076 (June 2025), 23 pages.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In ICSM. IEEE Computer
Society, 23-32.

Wei Zheng, Desheng Hu, and Jing Wang. 2016. Fault Localization Analysis Based
on Deep Neural Network. Mathematical Problems in Engineering 2016 (01 2016),
1-11. https://doi.org/10.1155/2016/1820454

Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang.
2021. An Empirical Study of Fault Localization Families and Their Combinations.
IEEE Trans. Software Eng. 47, 2 (2021), 332-347.

https://doi.org/10.2307/2282330
https://doi.org/10.2307/2282330
https://github.com/eliorc/node2vec
https://github.com/eliorc/node2vec
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1155/2016/1820454

	Abstract
	1 Introduction
	2 Methodology
	2.1 Background
	2.2 Problem Statement
	2.3 Key Observations

	3 Design
	3.1 Our Approach
	3.2 Overview
	3.3 Training Exemplars Generation
	3.4 Model Iteration

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness
	4.3 RQ2: Ablation Study
	4.4 RQ3: Efficiency

	5 Discussion
	5.1 Threats to Validity
	5.2 Implications for SE

	6 Related work
	7 Conclusion
	Acknowledgments
	References

