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ABSTRACT

Unlearnable examples (UEs) aim to protect personal privacy from
abuse in model training. Existing work primarily generates UEs
by crafting imperceptible perturbations through search or optimiza-
tion and introducing them to clean samples. Despite considerable
progress in UE methods, their applicability in real-world scenarios
and effectiveness under different defense strategies remains limited.
In this paper, we reveal the connections between poisoning-based
backdoor attacks and UEs from the perspective of shortcut learning.
Specifically, both the perturbations in UEs and backdoor triggers are
easy-to-learn features, and thus models trained on samples with them
will ignore other important semantic features and perform poorly
on clean data. Motivated by the observation, we propose TRIG-
GERUE, which utilizes the backdoor triggers to craft effective UEs
for the first time. Our experimental results show that our method
significantly outperforms existing state-of-the-art UE methods. Code:
https://github.com/pppppkun/TriggerUE.

Index Terms— Unlearnable Examples, Backdoor Attacks

1. INTRODUCTION

A key prerequisite for training a high-performance deep neural net-
work is a large-scale, high-quality training dataset [1, 2]. To achieve
this, individuals or organizations tend to use web crawlers to scrape
data from the internet [3, 4]. However, unauthorized collection or
illegal purposes may raise serious privacy concerns. For example,
a company has been continuously collecting facial images from the
internet for training commercial facial recognition models [5]. To
protect personal data from abuse without affecting user experience,
researchers have proposed utilizing unlearnable example (UE) meth-
ods [6, 7, 8, 9, 10] that introduce imperceptible perturbations to the
clean data to craft UEs, ensuring that unauthorized models trained on
UE:s perform poorly on clean data distributions.

Despite the significant progress that has been made, existing UE
methods still exhibit certain limitations. Firstly, they assume the
availability of an entire dataset or a known number of classes [6, 11,
12, 10, 9], which is challenged in real-world scenarios where data is
dynamic or even streaming [13, 6]. Secondly, adversarial training [7]
and strong data augmentation [14, 15, 16] have been demonstrated
to defend against current UE methods [12, 9, 17]. These approaches
restore the test accuracy decreased by UEs, thereby rendering privacy
protection less effective.

In this paper, we reveal the connections between poisoning-based
backdoor attacks and UEs from the perspective of shortcut learning.
Specifically, shortcut learning [18, 19, 20] suggests that models tend
to ignore semantic features and focus on easy-to-learn features that are
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sufficient for distinguishing examples from different classes. From
this perspective, both the perturbations in UEs and backdoor triggers
can be treated as the easy-to-learn semantic features that can cause
the models to primarily rely on them for prediction while ignoring
other important semantic features [9, 8, 21, 22, 23]. Based on this
observation, we propose TRIGGERUE, which crafts UEs by injecting
backdoor triggers. Our TRIGGERUE consists of two main steps,
including feature elimination and trigger injection. Specifically,
TRIGGERUE first generates adversarial noises that aim to eliminate
the semantic features of clean samples. Then, we generate class-wise
triggers and inject the same trigger for the samples of the same class.
By injecting the class-wise triggers, the models would treat these
triggers as classification shortcuts and ignore other semantic features,
thereby achieving poor generalization and personal privacy protection.
We evaluated the effectiveness of our approach and compared it to
baselines across various datasets, defense strategies, and adaptive
defenses. Our experimental results demonstrate that TRIGGERUE
achieves better performances across different experimental settings.

2. BACKDOOR TRIGGER FOR UNLEARNABLE
EXAMPLES

2.1. Problem Definition

Threat Model. Following previous work [6, 7, 11], we focus on serv-
ing as a protector, preventing unauthorized use of protected data for
model training, thereby safeguarding personal privacy. We highlight
that our goal is to provide protection in practical, real-world scenarios
where data is growing in real-time. For example, on social media,
users continuously upload new data.

Protector’s and Infringer’s Goal. For the protector, the objective is
to release a new dataset without affecting user experience, ensuring
that unauthorized models trained on this dataset perform poorly on
clean data distributions. We consider an infringer as an unauthorized
model trainer. The goal of the infringer is to produce a model that gen-
eralizes well on clean data distribution via training on the protected
dataset.

Protector’s and Infringer’s Capability. The protector has full con-
trol over all data requiring protection. The protector does not have
any knowledge of the training process and cannot control it. The
infringer has access to the released datasets and has full control of
the training process of the model. However, the infringer is unaware
of the distribution or the proportion of unlearnable examples within
the given training dataset.

Defining Unlearnable Examples. We formulate the problem in the
context of image classification with DNNs. Let D. = {(@, ¥:) }i=1
denotes the clean training dataset contains n clean examples, where
x; € X C R%isi-th image, y; € Y = {1,..., K} isits label, and
K is the number of classes. We denote the clean test dataset as Dy,
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Fig. 1: The process of generating UEs by TRIGGERUE

where D; shares the same distribution as D.. The problem targeted
in this paper is to protect the data from unauthorized training by per-
turbing D, into an unlearnable dataset as D, = {(z; + i, yi) }iz1,
where §; € A C R is the perturbation. The A is the perturbation
set of D, and usually bounded by ||0]|, < €, where || - ||, is the £,
norm and e is set sufficiently small such that it does not affect the
utility of the example. To obtain the perturbations, we often need to
optimize the following problem:

réneaAX E(m,y)NDt [L£(f(x;0(9)),y)]

s.t. 0(0) = argeminIE(:,W)NDC [L(f(x+6;0),y)] @
where L is classification loss such as cross-entropy loss, f is the
model infringer intend to train and 6 is parameters of f. Intuitively,
Equation 1 aims to find a perturbation set such that a fully trained
model on the unlearnable examples @ + J exhibits the worst perfor-
mance on a clean test set D;.

2.2. Observations

Our key observation to craft unlearnable examples is that poisoning-
based backdoor attacks and UEs share similar properties from the
perspective of shortcut learning. Shortcut learning suggests that
models tend to focus on easy-to-learn features that are sufficient
for distinguishing examples, no matter whether it is semantic or
not [19, 20, 18]. From this perspective, the perturbations in UEs can
be treated as easy-to-learn features that are able to establish classifica-
tion shortcuts from perturbations to labels, thus preventing the models
from learning other semantic features [9, 8, 13]. Similarly, models
trained on poisoned samples (i.e., samples with injected triggers)
quickly learn stable correlations between triggers and target labels.
This suggests that backdoor triggers are also easy-to-learn features
that can create classification shortcuts [21, 24]. Based on this obser-
vation, if we inject a class-wise trigger into all samples of each class,
the model will explicitly learn the connection between the trigger and
the label while ignoring other semantic features, thus reducing gen-
eralization to the clean test set. This indicates that utilizing triggers
to craft UEs is feasible. Furthermore, the generation and injection
of triggers typically do not necessitate using surrogate models, nor
do they involve solving optimization or search tasks [25, 26, 27, 28].
This makes the generation of UEs more efficient and may achieve
better effectiveness across different model architectures. Moreover,
injecting triggers into a given sample does not require access to
other samples, which eliminates the assumption of an entire dataset
or a known number of classes and enhances flexibility in scenarios
with growing data. Employing triggers, as demonstrated in prior
research [29, 21, 30, 31], can also better resist adversarial training
and strong data augmentation.

2.3. Proposed Method

Based on these observations, we propose a novel unlearnable example
generation approach, named TRIGGERUE. TRIGGERUE consists of
two main steps: (1) the feature elimination step aims to eliminate
the easy-to-learn semantic features of the clean samples, and (2)
the trigger injection step focuses on injecting class-wise backdoor

triggers into samples to produce unlearnable examples. Figure 1
overviews the high-level of TRIGGERUE. TRIGGERUE takes as
input a clean example (x,y) and outputs an unlearnable example
(z',y) for this clean example. We will elaborate on each step in the
following.

2.3.1. Feature Elimination.

Before injecting triggers into samples, we first introduce adversarial
noises to perturb their semantic features. The reason is that the model
trained on samples with triggers can still learn semantic features that
are useful for classification, leading to sub-optimal unlearnability.
This is potentially because clean samples contain some easy-to-learn
semantic features that are useful for classification, as shown in prior
research [32, 33]. To eliminate these features, we generate the adver-
sarial noises and inject them into the clean samples, as the process
of optimizing noise involves eliminating features in the samples that
facilitate classification [34]. Specifically, we optimize the adversarial
example generation objective to craft the adversarial noises [34, 6]:

n}gax[ﬁ(F(mi +8:;07),y)] st ||6]lp <€ 2)

where F' denote a model and 0™ are the parameters of F, L is the

commonly used cross entropy loss. In our threat model, the protector
does not have any knowledge of the model F' trained by the infringer,
making it challenging to directly optimize Eq. 2. To address this
challenge, we leverage the transferability of adversarial noises to
generate transferable adversarial noises on a surrogate model. We
adopt OpenAl’s large-scale vision-and-language pre-trained model
CLIP [35] as our surrogate model because it has been demonstrated
to be effective in generating highly transferable adversarial noise [36].
To solve Eq. 2, as suggested in prior work [6, 7], we employ the first-
order optimization method Projected Gradient Descent (PGD) [7].
More specifically, Eq. 2 is solved by PGD as:

s =11, (5(t) + - sign(VsL(F(x + 6 6%), y))) , 3

where ¢ is the current step (7" steps in total), Vaﬁ(F(a:—i—é(t) ;07),y)
is the gradient of the loss, 11, is a projection function that clips the
noise by ||d]|| < €, and « is the step size. Note that because we use
CLIP as the surrogate model, y is the natural language description
of the sample in Eq. 3. We directly use the class name to which the
sample belongs as y.

2.3.2. Trigger Injection

In TRIGGERUE, we inject class-wise triggers into samples to pro-
duce unlearnable examples. As mentioned earlier, backdoor triggers
serve as easy-to-learn features to prevent the models from learning
other semantic features. As such, by injecting class-wise triggers,
the model would learn to distinguish between different classes solely
based on the features of backdoor triggers, thus resulting in poor gen-
eralization performance on the clean data distributions. Furthermore,
we require the triggers to be class-wise because if two classes use
the same trigger, the model would be compelled to identify and learn
additional semantic features to distinguish between these classes,
thereby counteracting the effectiveness of UEs.

We employ the warping-based backdoor attack WaNet [27] to
generate class-wise triggers. The reason why we adopt WaNet is that
WaNet can easily generate corresponding triggers for new classes dy-
namically produced in real-world scenarios. The capability of WaNet
originates from it generates triggers through a randomly sampled



Table 1: Test accuracy (%) of ResNet-18 trained on clean data vs.
UEs by different baselines.

SVHN CIFAR-10 CIFAR-100 ImageNet

Clean 95.94 95.1 75.51 53.15
TAP 65.21 17.07 12.76 27.59
EM 10.32 12.31 72 4.78
REM 13.34 14.29 343 723
EntF 82.27 84.85 50.06 34.22
LSP 8.23 14.75 8.78 3.44
OPS 9.44 13.56 11.69 6.54

AR 6.742 12.54 5.12 1.45
TRIGGERUE 6.108 9.46 2.21 0.78

uniform grid, enabling it to produce an arbitrary number of triggers.
More specifically, we follow the default implementation of WaNet to
initialize and inject triggers. We first sample a uniform grid of size
k x k x 2, then normalize it and multiply it by a warping strength
s. This grid is then upsampled to match the size of the image to
serve as the trigger. Once the trigger is obtained, we inject it into
the original image through the warping function WV used in WaNet,
which is implemented by the bi-linear interpolation function.

3. EXPERIMENT

3.1. Experiment Settings

Datasets. We extensively evaluate the effectiveness of TRIGGERUE
on SVHN [37], CIFAR10 [38], CIFAR100 [38], and the Tiny Im-
ageNet [39]. These datasets are the most widely used datasets in
previous work [6, 7, 11, 12, 9].

Implementation. In feature elimination, we employed CLIP
(ResNet50 as the backbone) for our surrogate model. When using
PGD (Eq. 3) to solve Eq. 2 for adversarial noises, we use £+, bound
to € = 8/255, & = 0.05, and T = 20. In trigger injection, we use
uniform grid size k = 4 and warping strength s = 0.5 to initialize
the trigger as recommended in WaNet [27].

Baselines. Following previous work [9, 12, 11, 10], we selected 7 rep-
resentative UEs as our baselines, which are Target Adversarial Poison-
ing (TAP) [6], Error-Minimizing (EM) [7], Robust Error-Minimizing
(REM) [11], Entangled Features (EntF) [12], Linear Synthetic Pertur-
bation (LSP) [8], One-Pixel Shortcut (OPS) [9], and Autoregressive
Perturbations (AR) [10]. For the studied baselines, we directly used
their official implementations along with the corresponding parameter
configurations.

Generation and evaluation. In all experiments, we followed the
same evaluation process as previous works [6, 7]: we trained the
model on the unlearnable dataset and evaluated the trained model
on the clean test set to assess its performance. Unless specifically
stated, standard data augmentation techniques were used when train-
ing models, and experiments were conducted on CIFAR-10 using
ResNet-18 [40].

Metric. In line with prior work [6, 7], we evaluate the effectiveness
of UEs by examining the test accuracy of the model trained on them.
The lower the test accuracy, the better the effectiveness.

3.2. Effectiveness

This section presents the experimental results to demonstrate the
effectiveness of our proposed TRIGGERUE. In Table 1, each row
represents the test accuracy of the same baselines under different
datasets, and each column represents the test accuracy of the same

Table 2: Time consumed by different methods.

Method Time costs
TAP ~5 hours
EM ~0.38 hours
REM ~17 hours
EntF ~3 hours
TRIGGERUE ~0.21 hours

Table 3: The test accuracy of different modules.

Variants Clean Test Accuracy (%)
Clean 95.1
Only Feature Elimination 93.21
Only Trigger Injection 3243
TRIGGERUE 9.46

datasets on different baselines. From Table 1, we have the follow-
ing observations. First, TRIGGERUE can effectively protect per-
sonal privacy. The accuracy of models trained on UEs generated by
TRIGGERUE significantly decreases compared to models trained on
clean data. Specifically, the model trained on UEs by TRIGGERUE
reaches accuracy less than chance accuracy on SVHN and CIFAR-10
and reaches nearly chance accuracy on CIFAR-100 and ImageNet.
Second, TRIGGERUE significantly outperforms all seven compared
baselines. In particular, compared to the lowest test accuracy on
different datasets achieved by baselines, the test accuracy of models
trained on UEs crafted by TRIGGERUE decreased by 9.4%, 23.1%,
35.5%, and 46.2% on SVHN, CIFAR10, CIFAR100, and ImageNet,
respectively. This indicates that UEs generated by TRIGGERUE bet-
ter protect user privacy. Third, TRIGGERUE can protect personal
privacy from a wide range of datasets. Specifically, TRIGGERUE
achieved the lowest test accuracy across different datasets, indicat-
ing that TRIGGERUE effectively handles different data distributions.
This is possible because backdoor triggers are generally designed
to be dataset-independent and easy-to-learn features. Thus, the UEs
crafted via backdoor triggers also exhibit good dataset independence.

3.3. Efficiency

In this section, we empirically investigate the time efficiency of TRIG-
GERUE. Since our method also involves optimization steps, we ensure
fairness by comparing efficiency with other methods that also require
optimization steps. Specifically, we measure the time cost spent by
TAP [6], EM [7], REM [11], and EntF [12] on CIFAR-10. The re-
sults in Table 2 show that TRIGGERUE requires the least amount of
time among methods that need optimization steps. Solving the opti-
mization problem with PGD is the time bottleneck for TRIGGERUE
(injecting triggers to the dataset takes only 20 seconds). However,
since we only need to slightly affect semantic features, we require
only 20 iterations. Other methods, such as TAP, require 250 iterations
with PGD, resulting in significantly higher time costs. Furthermore,
TRIGGERUE achieves significantly better performance than the other
baselines as demonstrated in Section 3.2.

3.4. Ablation Study

Our method consists of two steps: feature elimination and trigger
injection. To investigate the contributions of these two steps, we
evaluate each separately. The results in Table 3 indicate that trig-
ger injection is more effective than feature elimination. Specifically,
when using only feature elimination, the test accuracy has almost no
change, indicating that this step alone does not affect the unlearnabil-
ity of samples. When using only trigger injection, the test accuracy
decreases, but the model still retains some generalization ability. The



Table 4: CIFAR-10 test accuracy of ResNet-18 when training using
standard augmentations plus Cutout, Cutmix, Mixup, or Adversarial
Training on different baselines.

Standard Aug +Cutout +CutMix +Mixup +Adversarial Training

Clean 95.1 94.77 95.1 94.89 85.43

AP 17.07 29.54 24.35 28.32 82.13

EM 12.31 15.21 17.32 17.87 74.54
REM 14.29 17.43 21.42 25.37 40.22
EntF 84.85 84.91 87.56 87.4 70.57
LSP 14.75 17.83 17.95 26.77 45.33
OPS 13.56 64.21 61.23 32.67 13.95

AR 12.54 13.21 19.23 15.98 25.34
TRIGGERUE 9.46 7.48 11.72 13.04 13.24

Table 5: The test accuracy of ResNet-18 trained under UEs created
by EM and our method under backdoor defenses.

NAD ABL
Clean 80.32  81.18
EM 24.21 15.32

TRIGGERUE 1984 14.61

best results are achieved when both methods are combined, suggest-
ing that noises added by feature elimination make the model focus
more on the triggers injected in the next step and ignore semantic
features.

3.5. Against Defenses

Against Common Defenses. We evaluated the performance of differ-
ent UE methods under various common defenses. Following previous
works [12, 10, 11], we benchmark our method against stronger aug-
mentation like Cutout [14], CutMix [15], and Mixup [16], and Adver-
sarial Training [7]. For adversarial training, we use a 10-step PGD
attack, setting step size to 2/255 and £+, bound to 8/255 following
previous works [12, 9]. Table 4 presents our accuracy compared
to baselines under standard data augmentation and three stronger
augmentations and adversarial training. Firstly, with the addition of
strong data augmentation, the effectiveness of all methods decreases,
but our method still achieves the best performance. Specifically, on
Mixup, which is widely considered the most effective data augmenta-
tion [10], the test accuracy of TRIGGERUE is decreased by 22.54%
compared to the sub-optimal test accuracy achieved by AR. This
indicates that TRIGGERUE is more resistant to data augmentation
than baselines. Secondly, with adversarial training, we found that the
effectiveness of all methods, except for OPS and ours, significantly
decreased. Notably, we achieved competitive results compared to
OPS (13.24 vs. 13.95). This may be because the perturbations added
by the triggers and OPS are unbound [9], allowing them to bypass
adversarial training.

Against Adaptive Defenses. Since we use backdoor triggers to craft
UEs, we need to discuss whether TRIGGERUE is resistant to existing
backdoor defenses so that it can still provide promising privacy pro-
tection even under adaptive defense methods. In poison suppression
defenses [29, 21], defenders modify the training process to defend
against backdoors without knowing whether the dataset has been poi-
soned, which is closely aligned with our threat model. Specifically,
we have selected the representative methods NAD [29] and ABL [21]
from poison suppression defenses as our backdoor defense approach.
We are running them on the UEs crafted by TRIGGERUE and EM [7]
on CIFAR-10. Table 5 shows the test accuracy of EM and our method
under NAD and ABL defenses. Specifically, when using NAD, the
test accuracy increased from 13.24 with adversarial training to 19.84.
However, our method still achieved a relatively lower test accuracy,

a decrease compared to EM by 18.05%. This suggests that bypass-
ing TRIGGERUE through adaptive poison suppression defenses is
relatively difficult.

4. CONCLUSION

In this paper, we identify the connections between poisoning-based
backdoor attacks and UEs from the perspective of shortcut learning
and discover that triggers could be utilized to craft effective UEs. We
propose a novel method TRIGGERUE for crafting UEs using triggers,
initially adding adversarial noises to images to eliminate easy-to-learn
semantic features, followed by injecting class-wise triggers. Our
experiments demonstrate that UEs crafted with triggers outperform
baselines across various experimental setups. We believe our research
bridges two domains and opens new and intriguing directions for
investigation.
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